Rings with Ascending Condition on Annihilators
نویسندگان
چکیده
منابع مشابه
Rings with a setwise polynomial-like condition
Let $R$ be an infinite ring. Here we prove that if $0_R$ belongs to ${x_1x_2cdots x_n ;|; x_1,x_2,dots,x_nin X}$ for every infinite subset $X$ of $R$, then $R$ satisfies the polynomial identity $x^n=0$. Also we prove that if $0_R$ belongs to ${x_1x_2cdots x_n-x_{n+1} ;|; x_1,x_2,dots,x_n,x_{n+1}in X}$ for every infinite subset $X$ of $R$, then $x^n=x$ for all $xin R$.
متن کاملOn Regular Rings Satisfying Weak Chain Condition
In this paper, we shall study regular rings satisfying weak chain condition. As main results, we show that regular rings satisfying weak chain condition are unit-regular, and show that these rings have the unperforation and power cancellation properties for the family of finitely generated projective modules.
متن کاملA COMMUTATIVITY CONDITION FOR RINGS
In this paper, we use the structure theory to prove an analog to a well-known theorem of Herstein as follows: Let R be a ring with center C such that for all x,y ? R either [x,y]= 0 or x-x [x,y]? C for some non negative integer n= n(x,y) dependingon x and y. Then R is commutative.
متن کاملrings with a setwise polynomial-like condition
let $r$ be an infinite ring. here we prove that if $0_r$ belongs to ${x_1x_2cdots x_n ;|; x_1,x_2,dots,x_nin x}$ for every infinite subset $x$ of $r$, then $r$ satisfies the polynomial identity $x^n=0$. also we prove that if $0_r$ belongs to ${x_1x_2cdots x_n-x_{n+1} ;|; x_1,x_2,dots,x_n,x_{n+1}in x}$ for every infinite subset $x$ of $r$, then $x^n=x$ for all $xin r$.
متن کاملOn Algebraic Immunity and Annihilators
Algebraic immunity AI(f) defined for a boolean function f measures the resistance of the function against algebraic attacks. Currently known algorithms for computing the optimal annihilator of f and AI(f) are inefficient. This work consists of two parts. In the first part, we extend the concept of algebraic immunity. In particular, we argue that a function f may be replaced by another boolean f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nagoya Mathematical Journal
سال: 1966
ISSN: 0027-7630,2152-6842
DOI: 10.1017/s0027763000011983